Showing posts with label Electronic. Show all posts
Showing posts with label Electronic. Show all posts

5/09/2013

PT4115 continuous conduction mode inductive step-down converter



The PT4115 is a continuous conduction mode inductive step-down converter, designed for driving single or multiple series connected LED efficiently from a voltage source higher than the total LED chain voltage. The PT4115 operates from an input supply between 6V and 30V and provides an externally adjustable output current of up to 1.2A. Depending upon the supply voltage and external components, the PT4115 can provide more than 30 watts of output power. The applications of the PT4115 include Low voltage halogen replacement LEDs, Automotive lighting, Low voltage industrial lighting, LED back-up lighting, Illuminated signs, SELV lighting, LCD TV backlighting.

5/08/2013

Digital voltmeter using ICL7107

The circuit given here is of a very useful and accurate digital voltmeter with LED display using the ICL7107 from Intersil. The ICL7107 is a high performance, low power, 3.5 digit analog to digital converter. The IC includes internal circuitry for seven segment decoders, display drivers, reference voltage source and a clock. The power dissipation is less than 10mW and the display stability is very high.




The working of this electronic circuit is very simple. The voltage to be measured is converted into a digital equivalent by the ADC inside the IC and then this digital equivalent is decoded to the seven segment format and then displayed. The ADC used in ICL7107 is dual slope type ADC. The process taking place inside our ADC can be stated as follows. For a fixed period of time the voltage to be measured is integrated to obtain a ramp at the output of the integrator. Then a known reference voltage of opposite polarity is applied to the input of the integrator and allowed to ramp until the output of integrator becomes zero. The time taken for the negative slope to reach zero is measured in terms of the IC’s clock cycle and it will be proportional to the voltage under measurement. In simple words, the input voltage is compared to an internal reference voltage and the result is converted in a digital format.

The resistor R2 and C1 are used to set the frequency of IC’s internal clock. Capacitor C2 neutralizes the fluctuations in the internal reference voltage and increases the stability of the display.R4 controls the range of the voltmeter. Right most three displays are connected so that they can display all digits. The left most display is so connected that it can display only “1” and “-“.The pin5(representing the dot) is connected to ground only for the third display and its position needs to be changed when you change the range of the volt meter by altering R4. (R4=1.2K gives 0-20V range, R4=12K gives 0-200V range ).
Circuit diagram.

Notes.

    Assemble the circuit on a good quality PCB.
    The circuit can be powered from a +/_5V dual supply.
    For calibration, power up the circuit and short the input terminals. Then adjust R6 so that the display reads 0V.
    The ICL7107 is a CMOS device and it is very sensitive to static electricity. So avoid touching the IC pins with your bare hands.
    The seven segment displays must by common anode type.
    I assembled this circuit few years back and it is still working fine.



5/06/2013

AD603AR low noise, voltage-controlled amplifier


The AD603AR is a low noise, voltage-controlled amplifier for use in RF and IF AGC systems. The AD603AR provides accurate, pin selectable gains of –11 dB to +31 dB with a bandwidth of 90 MHz or +9 dB to +51 dB with a bandwidth of 9 MHz. Any intermediate gain range may be arranged using one external resistor. The input referred noise spectral density is only 1.3 nV/ÖHz and power consumption is 125 mW at the recommended ±5 V supplies. The applications of the AD603AR include RF/IF AGC Amplifier, Video Gain Control, A/D Range Extension, Signal Measurement.

AD603AR absolute maximum ratings: (1)Supply Voltage ±VS: ±7.5 V; (2)Internal Voltage VINP (Pin 3): ±2 V Continuous, ±VS for 10 ms, GPOS, GNEG (Pins 1, 2): ±VS; (3)Internal Power Dissipation: 400 mW; (4)Operating Temperature Range: –40℃ to +85℃; (5)Storage Temperature Range: –65℃ to +150℃; (6)Lead Temperature Range (Soldering 60 sec): +300℃.

AD603AR features: (1)"Linear in dB" Gain Control; (2)Pin Programmable Gain Ranges: -1 dB to +31 dB with 90 MHz Bandwidth, +9 dB to +51 dB with 9 MHz Bandwidth; (3)Any Intermediate Range, e.g., -1 dB to +41 dB with 30 MHz Bandwidth; (4)Bandwidth Independent of Variable Gain; (5)1.3 nV√Hz Input Noise Spectral Density; (6)±0.5 dB Typical Gain Accuracy; (7)MIL-STD-883 Compliant and DESC Versions Available.

5/01/2013

Measuring and Test Circuit 2N7002


                                    2N7002

Constant off-time switching regulators offer several advantages over constant-frequency designs The only potential problem is that the switching frequency Increases with nsmg input voltage In designs that have large ratios of the high line to low-line supply voltage,this frequency shift can get quite large As a result,the switching losses can become excesslve at high input voltages To offset this problem,the simple circuit shown detects the high input voltage condition and lowers the switching frequency to keep switching losses under control The frequency-shift circuit consists of D3,R8,Q1,and C12 When Vin exceeds the zener voltage plus the FET threshold,Q1 turns on and adds an extra timing capacitor(C12) in parallel with the timing capacitor (C10) This increases the off-time,lowering the frequency.

4/27/2013

LM393N integrated Circuits (ICs)

A TMOS power FET, Q1, and an LM393N comparator provide a high-efficiency rectifter circuit. When VA exceeds VB, U1's output becomes high and Q1 conducts. Conversely, when VB exceeds VA, the comparator output becomes low and Q1 does not conduct.

The forward drop is determined by Q1's on resistance and current I. The MTH40N05 has an on resistance of 0.028 Ω; for I = 10 A, the forward drop is less than 0.3 V. Typically, the best Schottky diodes do not even begin conducting below a few hundred mV.

4/26/2013

pulse signal interfaces EPC1PC8



The pulse signal examined is a driving signal of the power, used in the propulsion power to support, the drive current is usually several mA to several numerous mA, adopt the open-collector gate OC The form is exported, it is usually 12 – 30 V signal. For compatible many kinds of signal levels, and can isolate power type signal and ordinary base band level signal, realize better electromagnetic compatibility, this system adopts the photoelectric coupler as signal isolation and interface device of level switch.

TLP121 is the photoelectric coupler that Toshiba produced, isolates impedance as M grade, its drive current of forward direction IF Maximum 20 mA, rear end switch open and make time ‘s s grade, can respond to the request that the error in emasurement of this system pair is not greater than 1 ms. The input interface resistance is set as the adjustable resistance, can adapt to different input voltages.

The pulse signal interface circuit is shown as in Fig Straight line and loop of pulse signal are connected to the forward end 1, 3 pins of TLP121 in Fig of the photosensitive resister ,Rear end 4, 6 pins of TLP121 in Fig Adopt 5V power in the board to pull upward, sends and deals with FPGA to the interface after having a facelift through the Schmidt circuit 74HC14. When the pulse signal is effective, photosensitive resister forward end have electric current flow through, interface circuit export the intersection of high level and ” the 1 ” ; When pulse signal invalid, interface circuit export the intersection of low level and ” the 0 ” .

interface treatment FPGA

Because need to gauge pulse signals of No. 80, it is unable to meet concurrent processing’s demands to adopt the one-chip computer, so choose FPGA and finish the impulse sampling function. Interface deal with FPGA adopt the intersection of Altera and FLEX10K50 of Company, working primary frequency is 6 MHz, the storage chip adopts EPC1PC8.
Its main function has three parts: Frequency demultiplication timer, sampled data buffer, peripheral control logic. FPGA carries on the frequency demultiplication to the main clock, forms cycle as the clock signal of 1 ms. FPGA every ms finishes running side by side and gathers the pulse signals of No. 80 once, leaves the data in the register, send out the interrupt signal to the one-chip computer at the same time, notify the one-chip computer and initiate the data to move, and the time counter within the one-chip computer increases by oneself. The sampled data buffers the module and is used for latching the pulse signals of No. 80 to the internal register at the same time, the one-chip computers every ms all read once. Peripheral control logic is used in the decipher of every control signal of periphery of the one-chip computer, including control register, every chip control the signal interpretation, and the realization of other auxiliary functions.

4/25/2013

INA128, Adding -9V offset with reference pin BAV99


There is a bipolar (-10V/+10V) ADC on my circuit. And want to measure 0V to 5V signal with high empedance circuitry. To not loose ADC resolution I want to add a negative offset in INA128 circuit without using second amplifier. (0V to 5V  input;  -9V to 8.5V output) Theroticaly and experimentaly (using TINA-TI)  applying -9V to INA128 reference input solve my problem. Input and output voltage seems to be within specified limits but what about internal node voltages.

According to my calculation; when input is 5V and output is 8.5V,  A2 output node should be 11.25V.  But it seems difficult the reach this level with 12V supply. (Is it RRO)

Could you please clearify and make me sure for these ?

1.) Reference input is just intended for applying small offset nulling voltages or can I use it to apply higher offset ?

2. ) Using -9V offset is adequate for INA128 ? If yes how does it effect the CMRR ?

3.) Using 15V positive supply for INA128 allows me to apply -9V offset to reference pin if 12V supply is not enough?
a

( Diodes are BAV199 but not found in TINA-TI library so I used BAV99 instead. )

4/23/2013

Schematics LM358 Op Amp



In this schematic, a piezo is the sensor. Piezos generate voltage when physically bent or deformed, the the foltage is in the millivolt range. The direction that the piezo is deformed determines the polarity: bend it one way, get a positive voltage. Bend it the other way, get a negative voltage.


In this circuit, the piezo is put through a full-wave rectifier bridge (the four diodes) to make its voltage always positive. The output of the bridge is sent into one of the LM358's amplifiers that's configured as a voltage summing amp. The output of that amp is then fed into the other amp on the LM358 that's configured as a DC voltage gain amp. The output from the second amp is approximately 0.2 - 3.0 V DC.

4/21/2013

Mono Power Amplifier A1015, BD140 ,TIP2955


Mono Power Amplifier - A1015, BD140 ,TIP2955 Circuit Diagram


Typically audio amplifier stereo amplifier to a two amplifier. And if a mono amplifier is a single speaker. However this circuit command be present extended to the mono two loudspeaker.But not a equivalence or else serialization access.This makes it needless impedance of the speaker has altered.But will remain to utilize the spokeswoman as a replacement for of the resistance - Collection Peter (RC) of the transistor.The circuit can be alive prolonged to 2 loudspeaker itself.

What time raising the power supply circuit and the audio to input. the audio sign coupling to through the C1 and R1 to increase with the Q1.Which Q1 serves like the Regional Pre amp amplifier to power up to a one point.already conveyance it to Q2.Which Q2 is connected to emitter follower circuit.be active as a driver amplifier intimate section from the pre amp section provides added power to drive the Q3 perform. and Q3 motivation provide while a Regional Power amp amplifier output to the spokeswoman.The opinion of the audio intimate through the VR1 and R2 to enter the pin B of Q2.To control the stability of working instead of well brought-up.This circuit is an output of 40 milliwatts watts of distortion of the gesture rate is by the side of 0.1 percent.And frequency response from 15 Hz - 200 kHz.

4/16/2013

User Interface - Lcd Driver Based On The HT1621 Controller




Application Note Abstract This Application Note describes implementation of a liquid crystal Display (LCD) driver based on the widely available HOLTEK HT1621 LCD Controller Methods and algorithms of Display control are described and an API library is provided. The LCD used in this example was a customer’s custom part. The proposed algorithms CAN be easily adapted to any custom LCD panel connected to the controller. Introduction LCDs are widely used as data Display devices in embedded systems. Among the features that have made LCDs popular are low price, low power dissipation, lightweight, durability, reliability, and broad support by dedicated ICs for Communication with Microcontrollers A good example of an LCD Driver is the Hitachi character LCD Driver HD44780, the industry standard. This dot-matrix LCD Controller is supported by PSoC APIs. It is useful in applications that permit alphanumeric data Display However, specialized Displays are often needed. Specialized Displays keep end- product prices low, simplify the Interface between the Microcontroller and LCD Driver and decrease weight and size parameters. Examples of specialized Displays include Clocks calculators, telephones, and home and industrial appliances. This implementation is based on one of these dedicated drivers, the HT1621. This Application Note addresses the proposed implementation in two parts: ƒ General Description ƒ LCD Driver Implementation General Description The HT1621 driver is a 128-segment (32x4), multi-functional LCD Driver with memory mapping. The software configuration feature of HT1621 makes it suitable for many LCD applications, including LCD modules and Display subsystems. Only three or four connections are required for interfacing between the host controller and the HT1621. A structural schematic of the Display system is shown in Figure 1. This structure requires few external components and uses only three Interface connections. The system consists of the PSoC, HT1621 controller, and an LCD panel. The HT1621 besides its primary function as an LCD controller, has peripherals including the watchdog Timer time base generator and the Tone frequency generator. For more information about these features, refer to the HT1621 data sheet. Note that the controller has an on-chip RC Oscillator (256 kHz) for controlling the LCD and peripherals. This General Description focuses on the components and functions of the HT1621 driver that relate directly to the LCD: ƒ Display Memory RAM ƒ LCD Driver in HT1621 ƒ Command Format ƒ Interfacing with HT1621

4/11/2013

CA3046 VCA




Using discrete transistors from a transistor array, this circuit avoids an OTA altogether. It uses one transistor as a Gilbert multiplier to predistort the signal, so that a larger signal can be fed into the circuit. The circuit is based on the one described in Modulus issue 5, that was provided by Chris Crosskey.
I have modfied it with a trimmer to adjust the DC offset and adjusted the input sensitivity and output gain to give some headroom and unity gain. This VCA has a linear response. A diode has been added on the control input, to block out negative voltages, which cause DC on the output. Because of the diode, the control caracreristics is unlinear below 1 volt.
The predistortion really works in this circuit. The distortion stays low up to a point where it suddenly increases dramatically. With the chosen resistor values, that point is well above normal signal levels.
Noise figures for this circuit is comparable to the SSM2024 and the LM13600 but signal bleedthrough is not as good. On the other hand, CV bleedthrough is lower than the LM13600, with proper trimming.


CA3046

4/09/2013

Wideband Sense & Heater Control ADC muxing 74HC4052



 The dual 4 to 1 line mux U4 (74HC4052) allows two groups of four signals to be sensed by the microcontroller's two ADC input lines ADC0 and ADC1.

Wideband signals Vsx5, Ih, Vsx1, IpSense, DACV & Cal (VGND) voltages are sensed as well as H- via filtering provided by R112 and C103. also shown here is the H+ sense signal but it is not selected by the mux, but rather passed directly to the microcontroller via filter components R111 and C102.

Analogue user channel 1 USR1 (see Y5 connector input below) is also sensed by this mux.

3/24/2013

700W Power Amplifier with 2SC5200 & 2SA1943


700W Amplifier Adjust the amplifier power 700W looks calm, but we requirement not put out of your mind to the adjustment happening forcing transistors, the whole relating to-engagement of frequency offset. It is compulsory to change the current insurance rule which serves to guard the final transistors. Their tendency to happen allowable to keep the transistors in the SOAR characteristics. primary it was needed to evaluate all the necessary resistors and subsequently measured to verify the accuracy of the calculations, it is managed with satisfactory results. Peripheral changes required in support of it to be there able to consistently amplifier to supply power. - First you need to restore the 2k2 resistors stylish string with the LEDs on Zenerovými resistors with upper wattage. be enough 1/2W resistors, power loss next to 80V +-based 1W. - therefore was traded 1k2 resistor in the pointer resistor by the side of 620 ohms.


Which is the initial reap has doubled, so at this point is the overall gain amplifier 40 and the limit excitation is sufficient to 1V rms. - Předbudiči transistors were replaced by stronger MJE15032/33 since KF467/470 are permitted satellite dish current 20mA - by the side of the exciter output stages are used the same transistors for example the output stage. - add up to of terminals of transistors has been increased to eight pairs - It had to occur to compensate designed for the excitation level by calculation a capacitor 10pF to 47pF + 22K appendage. This led to a slight "gradual" amplifiers, but this did not affect the ensuing parameters. This power is tuned correctly in support of this type of terminal transistors 2SA1943/2SC5200.

With with the purpose of it is a least assessment next to which the amplifier operates stably exclusive of pass by the side of the rising and falling edges of the genuine. - The ultimate adjustment, the adjustment terminal current protection transistor. The SOAR transistor characteristics shows with the intention of the most allowable radio dish current once the voltage of 1.5 A is ideal in favor of cooling, so it's essentially not as much of. Therefore, the current protection is customary to 12A, single-arm. This impersonate protection SOAR transistor characteristics. curt-circuit current is regarding 6 A which is about 075A for every transistor. This is far beneath the SOAR characteristics. The mechanical design is relatively clear-cut, the transistors are placed on the two cooling profiles with a height of 66 mm, width 44mm, overall part 260mm. They are twisted contrary to each one other in this way, from the cooling tunnel. Coolers are attaching the nylon aid which allows the compilation of transistors exclusive of washers, and thus better conveying tepla.DPS amplifier next to the top of the tunnel and the transistors are soldered from the underside of PCB.

3/18/2013

Driving Circuits from a CR2032 Lithium Coin Cell


Recently I have tested an complete over the top design which pushed the poor little CR2032 far beyond its limits. Time to grab a few facts from the datasheet for further reference.

To get a good example I found a quite elaborate CR2032 datasheet from Duracell. I think other batteries behave quite similar to this.

The general key fact of an CR2032 are obvious and quite easy to grab from the datasheet:

Voltage: 3V

Capacity: 240mAh (to 2.0V)

If you study the datasheet more closely you will see that the voltages drop sharply after it reaches 2.8V (after it has delivered about 170mAh).

ESR (Equivalent Series Resistor):about 18 to 20 Ohms.

The ESR (Equivalent Series Resistor) or IR (Internal Resistance) is quite flat up to 150mAh of capacitance – there it reaches about 20 Ohms. At 170mAh it reaches something like 30 Ohms. This is quite hefty. In comparison good capacitors have a series resistance from some Ohms to a fraction of an Ohm – so it is always good to put some (even electrolytic) capacitors in parallel to the battery. If you are concerned that switching on or of of your circuits discharges the battery to much by charging up the capacitors – there is a simple trick to prevent it: put the capacitors in front of the ‘on’ switch so that are always charged and will not charge after your circuit is switched on. The leakage current will be so small that it will be neglectable in most cases.

But if you want to calculate how much constant current you can draw from these batteries you have to use Ohm’s law:

V = R * I or I = V /R

If you take the later and say you want no voltage drop higher that 1.2 Volts – because after that your circuit reaches 1.8 Volts which makes your microcontroller most probably going brown out. Applying these with the ESR of 20 Ohms, you will get something like 60 mA you can draw by them (I = 1.2V/20Ohm). You if calculate more conservative and do not want to go below 2.8V – which gives you some 0.2 Volts head room  – you will only be able to draw 10 mA (I = 0.2V/20Ohm) – just enough for an LED. These calculations do not consider the voltage drop of the battery of its life time.

In the bottom line: If you use those batteries you have to consider the 20-30 Ohms series resistance. Especially if you draw some constant current (spikes can be easily removed using capacitors). Yo have to assume 170mAh as maximum capacitance because then the CR2032 reaches 2.8Volts and the ESR goes up to a whopping 30 Ohms – going up from there very steep. Because of the high ESR of the CR2032 you will most probably not be able to draw more than 20-30 mAh safely (as constant current).

Perhaps it is even better to get a boost converter to 3 or 3.3V – to suck out all the juice in the battery. This should should be good for the environment too. Or even better get rechargeable Lithium Cells.

So driving an RGB with an 5V boost op converter is impossible. At white (all three LEDs draw 20mA) it is 60mA current at 5V, considering a efficiency of 80% this will give you more than 120 mAh at 3.3V. Impossible or the CR2032. So my intended design will never work. I wish I had done those calculations before I designed it and not after I saw that the prototype does not work.


As we see the higher the current is the more loss we get by the ESR of 20 Ohms. So the question is how much power we can get from an CR2032. If we want to draw the maximum amount of power over a short time we simply take the power:

P=V*I

And we know that the voltage is

v=3-20*I

And we get

P=(3-20*I)*I

If we create a little graph from it we get



So we see that the maximum is somewhere at 75mA and somwhere at 0,1125 Watts. Perhaps the real theoretical value is a bit off – but most real batteries will be a bit off too, so it is a good enough aproximation.

So that is somewhat consistent to our previous calculations to not exceed 80mA to avoid a too big voltage drop.

But how many energy can we draw from an CR2032? For this we simply calculate the watt hour of the battery:

e=P*t and t=0,24A/I

so we get

e=(0,24/I)*P

or



But this is not very astonishing. The less current you draw the less loss you got at the internal resistor. But I am unsure if there is this resistor, which burns energy to heat. But since the batteries get hot if you draw too much power you will get some loss. But I do not think that the loss is equal to a 20 Ohm resistor. But the main finding is clear – the more current you draw the more loss you have.

From the comments I got the tip to put the lithium coin cells in series to get a higher coltage at the current draw. But this will enlarge the voltage swing at different current levels (from 6V at 0mA to 3V at 150mA). This can be dangerous for your circuit. A better approach would be to put the batteries in parallel to half the internal ESR – so you would still get 1.5 Volts at 150mA.

Of course to counter current spikes you should allways put sufficiently sized capacitors in parallel. Sufficiently sized depends on the level of current spikes and there time. Just check out how a Farad is defined and you can derrive the needed value (which is the product of voltage change and time).

But in most of my designs space is a rare good. So no parallel batteries and no big capacitor banks.

Something that could work is sucking the power with a boost converter to get a steady output voltage independent of the current draw. This would of course enhance the loss but at least we get the voltage we want at an expense of the efficiency.

3/05/2013

FR107 1.0AMP. Fast Recovery Rectifiers

This is one package pinout of FR107 .



FR107 1.0AMP. Fast Recovery Rectifiers.
 

  • ● Fast switching for high efficiency
  • ● Low cost
  • ● Diffused junction
  • ● Low reverse leakage current
  • ● Low forward voltage drop
  • ● High current capability
  • ● The plastic material carries UL recognition 94V-0
 

  • ●Case: JEDEC DO-41 molded plastic
  • ●Polarity: Color band denotes cathode
  • ●Weight: 0.012 ounces , 0.34 grams
  • ●Mounting position: Any

2/25/2013

motor controller for R/C models LL4148


The complete circuit diagram of the motor control is shown in Figure 1. The schematic includes all components for unidirectional as well as bidirectional use. The desired version is chosen before building the circuit. Your choice therefore determines the components used. The circuit has been kept as compact as possible. The result: a motor control weighing less than 25grammes.




Resistors:
R1 = 4kOhm, SMD
R2 = 100Ohm, SMD
R3 = 470Ohm, SMD
R4,R6 = 100kOhm, SMD
R5 = 10Ohm SMD
R7 = NTC, 100kOhm
R8 = 1kOhm, SMD
R9 = 10kOhm, SMD

Capacitors:
C1,C2 = 15pF, SMD
C3,C5 = 100nF, SMD
C4 = 10nF, SMD
C6 = 47µF 10V SMD

Semiconductors:
D1 = LL4148*
D2 = MBR2045CT*
T1 = BC517
T2,T3,T4 = BUZ11
T5 = IRF9530
IC1 = PIC16C84 (order code 966510-1)
IC2 = L4940V5
IC3 = PC827

Miscellaneous:
K1 = 10-way pinheader
X1 = 4MHz quartz crystal
Printed circuit board and programmed PIC (IC1): set order code 960095-C
PIC also available separately: order code 966510-1

2/21/2013

3.2 The 8255 a PI/O - Chip 82C55A

The 82C55A is a high performance CMOS version of the industry standard 8255A . It is a general purpose programmable I/O device which may be used with many different microprocessors. There are 24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. The high performance and industry standard configuration of the 82C55A make it compatible with the 80C86, 80C88 and other microprocessors. Static CMOS circuit design ensures low operating power. TTL compatibility over the full military temperature range and bus hold circuitry eliminate the need for pull-up resistors.





 The device comprises three 8 bit ports whereby port c can be sub-divided into two 4 bit groups. Each of these three ports is addressed by A0 and A1 . With it's read, write, the chip select and data signals it looks and behaves like a tiny ROM or a RAM with only three bytes.

    To switch between 'RAM-' and 'ROM-mode' the 8255 has a mode register where three working modes can be selected. The mode register is selected when A0 and A1 are set to high (+5V).

    The three modes are:

    Mode 0: basic input / output
    Mode 1: strobed input / output
    Mode 2: bi-directional bus





For our purpose only mode 0 was interesting, but the device may be switched into each with the setup supplied in this document.
To work with the three ports they must first be initialized. This is done by writing the proper control word into the control register. Figure 11a shows the definition of the control word. While bit D2, D5, D6 and D7 define mode 0..2 the bits D0, D1, D3 and D4 define the settings of the ports to input- or output-mode. In other words you need to 'program' or switch the 82C55 every time you want to change a port data flow direction.
If 'all input mode' in mode 0 is requested the control word would be 10011011bin = 9Bhex = 155dec. If 'all output mode' in mode 0 shall be selected the control word would be 10000000bin = 80hex = 128dec.

2/03/2013

TL494CN SMPS Controller








The TL494CN is a pulse-width-modulation control circuit. It incorporates all the functions required in the construction of a pulse-width-modulation (PWM) control circuit on a single chip. Designed primarily for power-supply control, the TL494CN offers the flexibility to tailor the power-supply control circuitry to a specific application. The TL494CN contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, a 5-V, 5%-precision regulator, and output-control circuits. It provides for push-pull or single-ended output operation, which can be selected through the output-control function.

TL494CN absolute maximum ratings: (1)VCC Supply voltage: 41 V MAX; (2)VI Amplifier input voltage: VCC + 0.3 V max; (3)VO Collector output voltage: 41 V max; (4)IO Collector output current: 250 mA max; (5)θJA Package thermal impedance:D package: 73℃/W max; DB package℃/W max: 82; N package 67 ℃/W max; NS package: 64℃/W max; PW package: 108℃/W max; (6)Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: 260 ℃ max; (7)Tstg, Storage temperature range: –65 to 150 ℃.

TL494CN features: (1)Complete PWM Power-Control Circuitry; (2)Uncommitted Outputs for 200-mA Sink or Source Current; (3)Output Control Selects Single-Ended or Push-Pull Operation; (4)Internal Circuitry Prohibits Double Pulse at Either Output; (5)Variable Dead Time Provides Control Over Total Range; (6)Internal Regulator Provides a Stable 5-V Reference Supply With 5% Tolerance; (7)Circuit Architecture Allows Easy Synchronization.

2/01/2013

Car Audio Amplifier TDA1557Q TDA1553Q



This stereo audio amplifier is for car purpose and can deliver up to 2 x 22W using a single TDA1557Q or TDA1553Q IC from Philips.