Showing posts with label ic. Show all posts
Showing posts with label ic. Show all posts

5/09/2013

Solar Minty, DHT22 , Waterproof DS18B20 , PH Probe


This is a work in progress project which uses a Solar charging MintyBoost to power an Arduino with a Proto Screw Shield on it. Attached is a 2X16 LCD using the I2C Backpack, a DHT22 Temperature and Humidity Sensor, a Waterproof DS18B20 Sensor and a 5V analog PH Probe/Adapter.




PT4115 continuous conduction mode inductive step-down converter



The PT4115 is a continuous conduction mode inductive step-down converter, designed for driving single or multiple series connected LED efficiently from a voltage source higher than the total LED chain voltage. The PT4115 operates from an input supply between 6V and 30V and provides an externally adjustable output current of up to 1.2A. Depending upon the supply voltage and external components, the PT4115 can provide more than 30 watts of output power. The applications of the PT4115 include Low voltage halogen replacement LEDs, Automotive lighting, Low voltage industrial lighting, LED back-up lighting, Illuminated signs, SELV lighting, LCD TV backlighting.

5/08/2013

Digital voltmeter using ICL7107

The circuit given here is of a very useful and accurate digital voltmeter with LED display using the ICL7107 from Intersil. The ICL7107 is a high performance, low power, 3.5 digit analog to digital converter. The IC includes internal circuitry for seven segment decoders, display drivers, reference voltage source and a clock. The power dissipation is less than 10mW and the display stability is very high.




The working of this electronic circuit is very simple. The voltage to be measured is converted into a digital equivalent by the ADC inside the IC and then this digital equivalent is decoded to the seven segment format and then displayed. The ADC used in ICL7107 is dual slope type ADC. The process taking place inside our ADC can be stated as follows. For a fixed period of time the voltage to be measured is integrated to obtain a ramp at the output of the integrator. Then a known reference voltage of opposite polarity is applied to the input of the integrator and allowed to ramp until the output of integrator becomes zero. The time taken for the negative slope to reach zero is measured in terms of the IC’s clock cycle and it will be proportional to the voltage under measurement. In simple words, the input voltage is compared to an internal reference voltage and the result is converted in a digital format.

The resistor R2 and C1 are used to set the frequency of IC’s internal clock. Capacitor C2 neutralizes the fluctuations in the internal reference voltage and increases the stability of the display.R4 controls the range of the voltmeter. Right most three displays are connected so that they can display all digits. The left most display is so connected that it can display only “1” and “-“.The pin5(representing the dot) is connected to ground only for the third display and its position needs to be changed when you change the range of the volt meter by altering R4. (R4=1.2K gives 0-20V range, R4=12K gives 0-200V range ).
Circuit diagram.

Notes.

    Assemble the circuit on a good quality PCB.
    The circuit can be powered from a +/_5V dual supply.
    For calibration, power up the circuit and short the input terminals. Then adjust R6 so that the display reads 0V.
    The ICL7107 is a CMOS device and it is very sensitive to static electricity. So avoid touching the IC pins with your bare hands.
    The seven segment displays must by common anode type.
    I assembled this circuit few years back and it is still working fine.



5/07/2013

EPC2LC20 Configuration Device


The EPC2LC20 is a Configuration Device which is designed for SRAM-Based LUT Devices.

EPC2LC20 absolute maximum ratings: (1)Supply voltage: -0.2 to 7.0 V With respect to ground; (2)DC input voltage: -0.2 to 7.0 V With respect to ground; (3)DC VCC or ground current: 50 mA; (4)DC output current, per pin: -25 to 25 mA; (5)Power dissipation: 250 mW; (6)Storage temperature: -65 to 150℃; (7)Ambient temperature: -65 to 135℃; (8)Junction temperature: 135℃.

EPC2LC20 features: (1)Serial device family for configuring APEXTM II, APEX 20K (including APEX 20K, APEX 20KC, and APEX 20KE), MercuryTM, ACEXR 1K, and FLEXR (FLEX 6000, FLEX 10KE, and FLEX 10KA) devices; (2)Easy-to-use 4-pin interface to APEX II, APEX 20K, Mercury, ACEX, and FLEX devices; (3)Low current during configuration and near-zero standby current; (4)5.0-V and 3.3-V operation; (5)Software design support with the AlteraR QuartusR II and; (6)MAX+PLUSR II development systems for Windows-based PCs as well as Sun SPARCstation, and HP 9000 Series 700/800.

5/06/2013

AD603AR low noise, voltage-controlled amplifier


The AD603AR is a low noise, voltage-controlled amplifier for use in RF and IF AGC systems. The AD603AR provides accurate, pin selectable gains of –11 dB to +31 dB with a bandwidth of 90 MHz or +9 dB to +51 dB with a bandwidth of 9 MHz. Any intermediate gain range may be arranged using one external resistor. The input referred noise spectral density is only 1.3 nV/ÖHz and power consumption is 125 mW at the recommended ±5 V supplies. The applications of the AD603AR include RF/IF AGC Amplifier, Video Gain Control, A/D Range Extension, Signal Measurement.

AD603AR absolute maximum ratings: (1)Supply Voltage ±VS: ±7.5 V; (2)Internal Voltage VINP (Pin 3): ±2 V Continuous, ±VS for 10 ms, GPOS, GNEG (Pins 1, 2): ±VS; (3)Internal Power Dissipation: 400 mW; (4)Operating Temperature Range: –40℃ to +85℃; (5)Storage Temperature Range: –65℃ to +150℃; (6)Lead Temperature Range (Soldering 60 sec): +300℃.

AD603AR features: (1)"Linear in dB" Gain Control; (2)Pin Programmable Gain Ranges: -1 dB to +31 dB with 90 MHz Bandwidth, +9 dB to +51 dB with 9 MHz Bandwidth; (3)Any Intermediate Range, e.g., -1 dB to +41 dB with 30 MHz Bandwidth; (4)Bandwidth Independent of Variable Gain; (5)1.3 nV√Hz Input Noise Spectral Density; (6)±0.5 dB Typical Gain Accuracy; (7)MIL-STD-883 Compliant and DESC Versions Available.

5/01/2013

Measuring and Test Circuit 2N7002


                                    2N7002

Constant off-time switching regulators offer several advantages over constant-frequency designs The only potential problem is that the switching frequency Increases with nsmg input voltage In designs that have large ratios of the high line to low-line supply voltage,this frequency shift can get quite large As a result,the switching losses can become excesslve at high input voltages To offset this problem,the simple circuit shown detects the high input voltage condition and lowers the switching frequency to keep switching losses under control The frequency-shift circuit consists of D3,R8,Q1,and C12 When Vin exceeds the zener voltage plus the FET threshold,Q1 turns on and adds an extra timing capacitor(C12) in parallel with the timing capacitor (C10) This increases the off-time,lowering the frequency.

4/27/2013

LM393N integrated Circuits (ICs)

A TMOS power FET, Q1, and an LM393N comparator provide a high-efficiency rectifter circuit. When VA exceeds VB, U1's output becomes high and Q1 conducts. Conversely, when VB exceeds VA, the comparator output becomes low and Q1 does not conduct.

The forward drop is determined by Q1's on resistance and current I. The MTH40N05 has an on resistance of 0.028 Ω; for I = 10 A, the forward drop is less than 0.3 V. Typically, the best Schottky diodes do not even begin conducting below a few hundred mV.

4/26/2013

pulse signal interfaces EPC1PC8



The pulse signal examined is a driving signal of the power, used in the propulsion power to support, the drive current is usually several mA to several numerous mA, adopt the open-collector gate OC The form is exported, it is usually 12 – 30 V signal. For compatible many kinds of signal levels, and can isolate power type signal and ordinary base band level signal, realize better electromagnetic compatibility, this system adopts the photoelectric coupler as signal isolation and interface device of level switch.

TLP121 is the photoelectric coupler that Toshiba produced, isolates impedance as M grade, its drive current of forward direction IF Maximum 20 mA, rear end switch open and make time ‘s s grade, can respond to the request that the error in emasurement of this system pair is not greater than 1 ms. The input interface resistance is set as the adjustable resistance, can adapt to different input voltages.

The pulse signal interface circuit is shown as in Fig Straight line and loop of pulse signal are connected to the forward end 1, 3 pins of TLP121 in Fig of the photosensitive resister ,Rear end 4, 6 pins of TLP121 in Fig Adopt 5V power in the board to pull upward, sends and deals with FPGA to the interface after having a facelift through the Schmidt circuit 74HC14. When the pulse signal is effective, photosensitive resister forward end have electric current flow through, interface circuit export the intersection of high level and ” the 1 ” ; When pulse signal invalid, interface circuit export the intersection of low level and ” the 0 ” .

interface treatment FPGA

Because need to gauge pulse signals of No. 80, it is unable to meet concurrent processing’s demands to adopt the one-chip computer, so choose FPGA and finish the impulse sampling function. Interface deal with FPGA adopt the intersection of Altera and FLEX10K50 of Company, working primary frequency is 6 MHz, the storage chip adopts EPC1PC8.
Its main function has three parts: Frequency demultiplication timer, sampled data buffer, peripheral control logic. FPGA carries on the frequency demultiplication to the main clock, forms cycle as the clock signal of 1 ms. FPGA every ms finishes running side by side and gathers the pulse signals of No. 80 once, leaves the data in the register, send out the interrupt signal to the one-chip computer at the same time, notify the one-chip computer and initiate the data to move, and the time counter within the one-chip computer increases by oneself. The sampled data buffers the module and is used for latching the pulse signals of No. 80 to the internal register at the same time, the one-chip computers every ms all read once. Peripheral control logic is used in the decipher of every control signal of periphery of the one-chip computer, including control register, every chip control the signal interpretation, and the realization of other auxiliary functions.

4/25/2013

INA128, Adding -9V offset with reference pin BAV99


There is a bipolar (-10V/+10V) ADC on my circuit. And want to measure 0V to 5V signal with high empedance circuitry. To not loose ADC resolution I want to add a negative offset in INA128 circuit without using second amplifier. (0V to 5V  input;  -9V to 8.5V output) Theroticaly and experimentaly (using TINA-TI)  applying -9V to INA128 reference input solve my problem. Input and output voltage seems to be within specified limits but what about internal node voltages.

According to my calculation; when input is 5V and output is 8.5V,  A2 output node should be 11.25V.  But it seems difficult the reach this level with 12V supply. (Is it RRO)

Could you please clearify and make me sure for these ?

1.) Reference input is just intended for applying small offset nulling voltages or can I use it to apply higher offset ?

2. ) Using -9V offset is adequate for INA128 ? If yes how does it effect the CMRR ?

3.) Using 15V positive supply for INA128 allows me to apply -9V offset to reference pin if 12V supply is not enough?
a

( Diodes are BAV199 but not found in TINA-TI library so I used BAV99 instead. )

4/23/2013

Schematics LM358 Op Amp



In this schematic, a piezo is the sensor. Piezos generate voltage when physically bent or deformed, the the foltage is in the millivolt range. The direction that the piezo is deformed determines the polarity: bend it one way, get a positive voltage. Bend it the other way, get a negative voltage.


In this circuit, the piezo is put through a full-wave rectifier bridge (the four diodes) to make its voltage always positive. The output of the bridge is sent into one of the LM358's amplifiers that's configured as a voltage summing amp. The output of that amp is then fed into the other amp on the LM358 that's configured as a DC voltage gain amp. The output from the second amp is approximately 0.2 - 3.0 V DC.

4/17/2013

Extending the MAX6959 LED Display-Driver Keyscan from 8-Keys to 12-Keys BAV70

The circuit is shown in the image. Each key requires a dual diode (such as the low-cost common-cathode BAV70 in SOT-23), which pulls both INPUT1 and INPUT2 low when the switch is pressed.

 Each of the four extension keys is wired to simulate a dual key press for the two keys on each of the four LED cathode drive outputs, DIG0/SEG0 through DIG3/SEG3. With this connection, each key pair is always scanned and debounced at the same time. Extra keys that simulate a dual key press of keys scanned by different LED cathode drive outputs will be unreliable. Because the keyscan is performed sequentially, two keys at a time, the extra key could miss the debounce cycle for one LED cathode drive, yet be correctly debounced by the other. This dual key press would then appear as two sequential key presses, not as a dual key press. This wouldn't happen with the recommended connection scheme because each key pair representing a dual key is debounced together.

4/16/2013

User Interface - Lcd Driver Based On The HT1621 Controller




Application Note Abstract This Application Note describes implementation of a liquid crystal Display (LCD) driver based on the widely available HOLTEK HT1621 LCD Controller Methods and algorithms of Display control are described and an API library is provided. The LCD used in this example was a customer’s custom part. The proposed algorithms CAN be easily adapted to any custom LCD panel connected to the controller. Introduction LCDs are widely used as data Display devices in embedded systems. Among the features that have made LCDs popular are low price, low power dissipation, lightweight, durability, reliability, and broad support by dedicated ICs for Communication with Microcontrollers A good example of an LCD Driver is the Hitachi character LCD Driver HD44780, the industry standard. This dot-matrix LCD Controller is supported by PSoC APIs. It is useful in applications that permit alphanumeric data Display However, specialized Displays are often needed. Specialized Displays keep end- product prices low, simplify the Interface between the Microcontroller and LCD Driver and decrease weight and size parameters. Examples of specialized Displays include Clocks calculators, telephones, and home and industrial appliances. This implementation is based on one of these dedicated drivers, the HT1621. This Application Note addresses the proposed implementation in two parts: ƒ General Description ƒ LCD Driver Implementation General Description The HT1621 driver is a 128-segment (32x4), multi-functional LCD Driver with memory mapping. The software configuration feature of HT1621 makes it suitable for many LCD applications, including LCD modules and Display subsystems. Only three or four connections are required for interfacing between the host controller and the HT1621. A structural schematic of the Display system is shown in Figure 1. This structure requires few external components and uses only three Interface connections. The system consists of the PSoC, HT1621 controller, and an LCD panel. The HT1621 besides its primary function as an LCD controller, has peripherals including the watchdog Timer time base generator and the Tone frequency generator. For more information about these features, refer to the HT1621 data sheet. Note that the controller has an on-chip RC Oscillator (256 kHz) for controlling the LCD and peripherals. This General Description focuses on the components and functions of the HT1621 driver that relate directly to the LCD: ƒ Display Memory RAM ƒ LCD Driver in HT1621 ƒ Command Format ƒ Interfacing with HT1621

4/11/2013

CA3046 VCA




Using discrete transistors from a transistor array, this circuit avoids an OTA altogether. It uses one transistor as a Gilbert multiplier to predistort the signal, so that a larger signal can be fed into the circuit. The circuit is based on the one described in Modulus issue 5, that was provided by Chris Crosskey.
I have modfied it with a trimmer to adjust the DC offset and adjusted the input sensitivity and output gain to give some headroom and unity gain. This VCA has a linear response. A diode has been added on the control input, to block out negative voltages, which cause DC on the output. Because of the diode, the control caracreristics is unlinear below 1 volt.
The predistortion really works in this circuit. The distortion stays low up to a point where it suddenly increases dramatically. With the chosen resistor values, that point is well above normal signal levels.
Noise figures for this circuit is comparable to the SSM2024 and the LM13600 but signal bleedthrough is not as good. On the other hand, CV bleedthrough is lower than the LM13600, with proper trimming.


CA3046

4/09/2013

Wideband Sense & Heater Control ADC muxing 74HC4052



 The dual 4 to 1 line mux U4 (74HC4052) allows two groups of four signals to be sensed by the microcontroller's two ADC input lines ADC0 and ADC1.

Wideband signals Vsx5, Ih, Vsx1, IpSense, DACV & Cal (VGND) voltages are sensed as well as H- via filtering provided by R112 and C103. also shown here is the H+ sense signal but it is not selected by the mux, but rather passed directly to the microcontroller via filter components R111 and C102.

Analogue user channel 1 USR1 (see Y5 connector input below) is also sensed by this mux.

4/07/2013

FM Stereo decoder using TDA7388

A very simple with a compact design FM stereo decoder schematic circuit can be designed using the TDA7388 IC manufactured by ST Microelectronics .
The TDA7338 is a monolithic integrated stereo decoder with noise blanking for FM car radio applications.
With the used BICMOS technique, the 19KHz Notch Filter, the PLL Filter and Phase Filter is realized on the chip with a Switched Capacitor concept.
The TDA7338 stereo decoder contains all necessary functions for processing the MPX signal.
The only external component needed for the PLL is the ceramic resonator for the oscillator which runs at 456kHz.



The pilot detector output is designed as an open collector output, therefore an external pull up resistor is needed. To force the decoder to "MONO" Pin 19 has to be clamped to a voltage below 0.8V.
Selecting VCO-OFF (Pin 7 to GND) the VCO is switched off and the SB and HCC are disabled.
This TDA7338 receiver circuit needs to be powered by a 9 volts DC power supply .

3/24/2013

700W Power Amplifier with 2SC5200 & 2SA1943


700W Amplifier Adjust the amplifier power 700W looks calm, but we requirement not put out of your mind to the adjustment happening forcing transistors, the whole relating to-engagement of frequency offset. It is compulsory to change the current insurance rule which serves to guard the final transistors. Their tendency to happen allowable to keep the transistors in the SOAR characteristics. primary it was needed to evaluate all the necessary resistors and subsequently measured to verify the accuracy of the calculations, it is managed with satisfactory results. Peripheral changes required in support of it to be there able to consistently amplifier to supply power. - First you need to restore the 2k2 resistors stylish string with the LEDs on Zenerovými resistors with upper wattage. be enough 1/2W resistors, power loss next to 80V +-based 1W. - therefore was traded 1k2 resistor in the pointer resistor by the side of 620 ohms.


Which is the initial reap has doubled, so at this point is the overall gain amplifier 40 and the limit excitation is sufficient to 1V rms. - Předbudiči transistors were replaced by stronger MJE15032/33 since KF467/470 are permitted satellite dish current 20mA - by the side of the exciter output stages are used the same transistors for example the output stage. - add up to of terminals of transistors has been increased to eight pairs - It had to occur to compensate designed for the excitation level by calculation a capacitor 10pF to 47pF + 22K appendage. This led to a slight "gradual" amplifiers, but this did not affect the ensuing parameters. This power is tuned correctly in support of this type of terminal transistors 2SA1943/2SC5200.

With with the purpose of it is a least assessment next to which the amplifier operates stably exclusive of pass by the side of the rising and falling edges of the genuine. - The ultimate adjustment, the adjustment terminal current protection transistor. The SOAR transistor characteristics shows with the intention of the most allowable radio dish current once the voltage of 1.5 A is ideal in favor of cooling, so it's essentially not as much of. Therefore, the current protection is customary to 12A, single-arm. This impersonate protection SOAR transistor characteristics. curt-circuit current is regarding 6 A which is about 075A for every transistor. This is far beneath the SOAR characteristics. The mechanical design is relatively clear-cut, the transistors are placed on the two cooling profiles with a height of 66 mm, width 44mm, overall part 260mm. They are twisted contrary to each one other in this way, from the cooling tunnel. Coolers are attaching the nylon aid which allows the compilation of transistors exclusive of washers, and thus better conveying tepla.DPS amplifier next to the top of the tunnel and the transistors are soldered from the underside of PCB.

3/21/2013

Ultimate jewel mod 4N25


My aim was to make a light up jewel (like everyone else) but this jewel had to be different. So basically I set about adding other features and the like to it.
This is what I've come up with and after you’ve read this you'll no doubt have a whole lot of similar, maybe even better ideas based on this design.

What I've ended up with is:
1. A jewel that’s glossy black when the console is off
2. Which glows blue when the console is on
3. Which glows red when there's harddrive activity

Most of these ideas are just transferred from a clear acrylic PC case mod that I did last year!



What you need:
car window tint
spray bottle
small squeegee
Wire - lots of thin gauge wire
4 x red LED’s
4 x blue LED’s
+ The resistors to go with them
For the blue/red LED’s we'll be using the 12volt power source
or if you can, try to get tri-colour LED's, they give you a better effect.
Lots of heatshrink - this is your safest bet as it makes the job incredibly easy and safe IMO
Hairdryer - to heat the heatshrink
Solder and soldering iron
Hot glue gun


Circuit
A piece of strip board
4N25 Opto-isolator
ULN2803 IC
1N4148 Diode
2 x 10K Resistor




1/17/2013

MAX232 product image MAX232 DUAL ELA-232 DRIVERS/RECEIVERS






The physical communication standard defines the signal voltage of -10V for logic '1', and +10V for logic '0'. However in practise, the voltage can be ranging from +/-3V to +/-25V. Not to worry if the measured voltage is not +/-10V. Typical receiver is able detect the incoming signal with voltage as low as +/-3V.
A microcontroller like PIC16F877a uses USART (5V system). The PC (personal computer) that we have in the office/home uses the standard RS232. To enable a microcontroller to communicate with the computer, a RS232 to TTL converter is required.

 

IC chip maker has come up with the integrated circuit for interfacing RS232 with TTL logic (5V for logic 1, 0V for logic 0), making the interfacing work very simple. MAX232 is one of the many IC in the market which helps to convert between RS232 -/+10V and TTL +/- 5V. It is a simple voltage level converter in short. The charge pump design allows the circuit to generate +/-10V from a 5V supply, with the help from the four capacitor. With charge pump to double up the supply voltage for RS232 transmitter, there is no need to design a power supply for +/-10V.
The diagram on the left shows the schematic of the MAX232 IC circuit. It consist of only 4x 1uF 16V electrolytic capacitor, and the MAX232 IC itself. It is that simple. I have include a layout which I always use for PC to PIC16F877a microcontroller, RS232 interface.

1/04/2013

TEA2025B bassed amplifier circuit and explanation



A very simple audio amplifier electronic project that can be used in small portable audio applications can be designed using the TEA2025B audio amplifier IC . This audio power amplifier project supports a wide input voltage range between 3 and 15 volts .
Input capacitor is PNP type allowing source to be referenced to ground.
In this way no input coupling capacitor is required. However, a series capacitor (0.22uF)to the input side can be useful in case of noise due to variable resistor contact.
The bootstrap connection allows to increase the output swing. The suggested value for the bootstrap capacitors (100μF) avoids a reduction of the output signal also at low frequencies and low supply voltages.
The voltage gain is determined by on-chip resistors R1 and R2 together with the external RfC1 series connected between pin 6 (11) and ground. The frequency response is given approximated Input capacitor is PNP type allowing source to be referenced to ground.
The frequency response is given approximated : VOUT/VIN= R1/(Rf +R2 +(1/JWC1))
The maximum output power that can be obtained using the TEA2025B audio amplifier in stereo mode is around 2.3 watts on a 4 ohms load .