Showing posts with label regulator. Show all posts
Showing posts with label regulator. Show all posts

4/10/2013

LM317T Variable Voltage Regulator




The LM317T is a adjustable 3 terminal positive voltage regulator capable of supplying in excess of 1.5 amps over an output range of 1.25 to 37 volts. The device also has built in current limiting and thermal shutdown which makes it essentially blow-out proof.

Output voltage is set by two resistors R1 and R2 connected as shown below. The voltage across R1 is a constant 1.25 volts and the adjustment terminal current is less than 100uA. The output voltage can be closely approximated from Vout=1.25 * (1+(R2/R1)) which ignores the adjustment terminal current but will be close if the current through R1 and R2 is many times greater. A minimum load of about 10mA is required, so the value for R1 can be selected to drop 1.25 volts at 10mA or 120 ohms. Something less than 120 ohms can be used to insure the minimum current is greater than 10mA. The example below shows a LM317 used as 13.6 volt regulator. The 988 ohm resistor for R2 can be obtained with a standard 910 and 75 ohm in series.

When power is shut off to the regulator the output voltage should fall faster than the input. In case it doesn't, a diode can be connected across the input/output terminals to protect the regulator from possible reverse voltages. A 1uF tantalum or 25uF electrolytic capacitor across the output improves transient response and a small 0.1uF tantalum capacitor is recommended across the input if the regulator is located an appreciable distance from the power supply filter. The power transformer should be large enough so that the regulator input voltage remains 3 volts above the output at full load, or 16.6 volts for a 13.6 volt output.

1/23/2013

Multi-purpose dual power supply regulator board AMS1117

All embedded systems require electric power to operate. Most of the electronic components inside them, including the processors, can operate at a wide range of supply voltage. For example, the operating voltage range for the PIC16F1847 microcontroller is 2 to 5.5 V. But there are certain applications where you need a regulated constant voltage to avoid malfunctioning of the circuit or getting erroneous results. For instance, any application that involves analog-to-digital conversion (ADC) requires a fixed reference voltage to provide accurate digital count for input analog signal. If the reference voltage is not stable, the ADC output is meaningless. Here is my latest dual power supply regulator board that provides constant 3.3V and 5.0V outputs from an unregulated DC input (6.5-10V). It is small in size and can be easily enclosed inside the project box along with a project circuit board. It can also be used to power test circuits on breadboard. The board uses two AMS1117 series fixed voltage regulators and receives input power through a DC wall wart or an external 9V battery.

he regulator circuit uses two AMS1117 series fixed voltage regulators, AMS117 5.0 and AMS1117 3.3, to derive constant 5.0V and 3.3V outputs from an unregulated DC input voltage. The circuit diagram of the board is shown below.





Note that both AMS1117-3.3 and AMS1117-5.0 derive input power directly from the unregulated supply voltage, which means each of them can deliver up to 0.8A of current. However, for this particular board it is recommended to limit the output current up to 500 mA maximum. For the safety of the AMS1117-3.3 regulator IC, the unregulated input voltage is also recommended to be within 6.5 to 10.0 V. This board is best to use in a project that is designed tobe powered with a 9V DC from either a PP3 battery or a wall adapter. The PCB is only 1.9″ x 1.4″, and occupies a small area inside the project box.


 

The board doesn’t have any ON/OFF switch, because it may not be useful if this board is enclosed inside the project box. But through-hole pads are provided on the board if you want to add one externally. There are two surface mount pads which are shorted together by default with solder to close the circuit permanently. These must be disconnected if an external ON/OFF switch has to be added.

The regulated output voltages (5V and 3.3V) are accessed through screw terminal blocks. This power supply board can also be used to power breadboard circuits (see the picture below).


 

1/20/2013

Simple Switch Step Down Regulator Circuit LM2596




The LM2596 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 3A load with excellent line and load regulation.
These devices are available in fixed output voltages of 3.3V, 5V, 12V, and an adjustable output version.

Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation†, and a fixed-frequency oscillator.

The LM2596 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 5-lead TO-220 package with several different lead bend options, and a 5-lead TO-263 surface mount package.

A standard series of inductors are available from several different manufacturers optimized for use with the LM2596 series. This feature greatly simplifies the design of switch-mode power supplies.

Other features include a guaranteed ±4% tolerance on output voltage under specified input voltage and output load conditions, and ±15% on the oscillator frequency. External shutdown is included, featuring typically 80 µA standby current. Self protection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

1/16/2013

Interesting mosfet voltage regulator IRF3205

  The mosfet used was the IRF3205 Enhancement Mosfet. Its function is to boost the current induced into the transmitting coil to increase its distance level. Mosfet ratings; Peak Drain to Source Voltage (VDS)= 55V On Resistance = 8.0 ohm Peak current = 110A when VDS = 10V So the current used was derived using the equation; ION = k (VDS(on) – VDS(th))2 Using the ratings to get the constant k we have, K = 110A/ (10V – 4V)2 K= 110/62 K = 110/36 K = 3.10AV2 Having gotten the constant k as 3.10AV2, we can derive our drain current as; I = 3.10 x (9V – 4V)2 I = 3.10 x 25 I = 77.50A




  The inductance of the inductor to use is derived using the equation; L = n2 x R2/ 9R + 10x Where, L is the inductance N is the number of turns R is the radius of coil X is the distance of turns To get the required reactance of the coil to use, we divide the DC supply Voltage by the Drain Current of the MOSFET. Therefore, XL = 21.21/77.50 XL = 0.27ohm If Reactance of an inductor XL = 2 x 3.142 x f x L, then 0.27 = 6.284 x 50 x L L = 0.27 / 314.2 L = 0.0008593H RECEIVING CIRCUIT: The receiving circuit has basically the receiving coil, half wave rectifier circuit/filter and the voltage capacitor. The value of R is used to set the charging current to a fixed value which is determined by the Charging voltage/ charging current. For this project, the charging voltage was 5V DC. And the charging current required was 500mA. Therefore the value of R will be; R = 5/0.5 = 10ohm