Showing posts with label TIP122. Show all posts
Showing posts with label TIP122. Show all posts
1/28/2013
HIGH CURRENT DC DEVICES TIP122
The Controlling Multiple LEDs Tutorial uses the 2N3904 small current transistor. This works well for controlling additional relatively small current devices with the Arduino. You may want to use the Arduino to control a DC powered device that draws more current that the 2N3904 transistor can supply. A solution for this situation is to use an NPN Darlington Transistor designed for medium power linear switching applications. In this tutorial we will use a TIP122 transistor, which can power devices up to 100VDC at 5 Amps. This can be used to power devices such as motors, solenoids and fans, where the only necessary operation control operation is ON and OFF (see the H-Bridge Tutorial for bi-directional rotation and speed control of DC motors.)
The circuit is identical to the 2N3904 transistor circuit - the base of the transistor (PIN 1) is connected to the Arduino output pin (D6) through a 1K OHM resistor. The emitter (PIN3) is connected to ground and the collector (PIN2) is connected to one end of the coil of the device being driven (in our example we have a 12VDC Solenoid connected). The other end of the coil is connected to the +12VDC external power supply (the ground from this power supply is connected to a common ground with the Arduino - this is necessary for the transistor to function). It is very important to put a diode across the coil of the device being powered to protect the control circuit from a potential voltage spike that can be created when current is released from the device being powered.
Labels:
Circuit diagram,
Controlling,
current,
DC,
DEVICES,
Electronic,
High,
LED,
Multiple,
project,
TIP122,
tutorial
1/21/2013
TIP122 Connection Diagram
TIP122
Speed control of permanent-magnet (PM) dc motors with the aid of optical or dc tachometers is generally inconvenient and difficult, particularly on motors with integral gearboxes. The high-speed shaft of the motor that drives the gearbox isn't always accessible and the speed of the geared-down shaft often is too low for tachometers. Described here is a single-supply regulating speed-control circuit that doesn't require a tachometer. It keeps the motor torque high under load by using positive feedback to compensate for the drop caused by armature resistance. In unregulated variable-speed PM dc motor systems, the drop in speed under load is particularly pronounced at low motor-supply voltages. The positive feedback generates a negative resistance that compensates for the nonlinear effects caused by armature resistance. It thereby ensures that the speed-control input voltage (Vi) linearly controls the speed of the motor. Armature resistance compensation is achieved if:
RS= RA/[gain(R3) / (R3 + R4)] - 1
The divider action of R3 and R4 together with the gain reduces the value required for Rs to minimize the power dissipation. C1 and R4 dampen the positive-feedback signal's response time, but they also form a low-pass filter and attenuate the motor current noise fed to the A2 input. The maximum output voltage swing from A2 is approximately VCC-2 V, and there is a 1.2-V Vbe loss by T1. This implies that the supply voltage (Vcc) should be about 5 V above the maximum desired motor voltage in order to allow for extra output drive to the motor under heavy load conditions. A reason-able choice for Rs is approximately RA/10, and the gain of A2 should be trimmed with RV2 to ensure that the motor's speed does not drop when loaded.
Subscribe to:
Posts (Atom)